Klamath River Fall Chinook Salmon Age-Specific Escapement, River Harvest, and Run Size Estimates, 2021 Run

Klamath River Technical Team 15 February 2022

Summary

The number of Klamath River fall Chinook Salmon returning to the Klamath River Basin (Basin) in 2021 was estimated to be:

_	Run Size					
Age	Number	Proportion				
2	10,334	0.16				
3	36,107	0.56				
4	17,648	0.27				
5	199	0.00				
Total	64,288	1.00				

Preseason forecasts of the number of fall Chinook Salmon adults returning to the Basin and the corresponding post-season estimates are:

_		Adults	
Sector	Preseason Forecast	Postseason Estimate	Pre / Post
Run Size	62,100	54,000	1.15
Fishery Mortality			
Tribal Harvest	8,100	8,100	1.00
Recreational Harvest	1,200	2,300	0.52
Drop-off Mortality	700	700	1.00
	10,000	11,100	0.90
Escapement			
Hatchery Spawners	20,500	12,900	1.59
Natural Area Spawners	31,600	29,900	1.06
	52,100	42,800	1.22

Introduction

This report describes the data and methods used by the Klamath River Technical Team (KRTT) to estimate age-specific numbers of fall Chinook Salmon returning to the Basin in 2021. The estimates provided in this report are consistent with the Klamath Basin Megatable (CDFW 2022) and with the 2022 forecast of ocean stock abundance (KRTT 2022).

Age-specific escapement estimates for 2021 and previous years, coupled with the coded-wire tag (CWT) recovery data from Basin hatchery stocks, allow for a cohort reconstruction of the hatchery and natural components of Klamath River fall Chinook Salmon (Goldwasser et al. 2001, Mohr 2006a, KRTT 2022). Cohort reconstruction enables forecasts to be developed for the current year's ocean stock abundance, ocean fishery contact rates, and percent of spawners expected in natural areas (KRTT 2022). These forecasts are necessary inputs to the Klamath Ocean Harvest Model (Mohr 2006b), the model used by the Pacific Fishery Management Council to forecast the effect of fisheries on Klamath River fall Chinook Salmon.

Methods

The KRTT obtained estimates of abundance and age composition separately for each sector of harvest and escapement. Random and nonrandom sampling methods of various types were used throughout the Basin (Table 1) to estimate the numbers of fall Chinook Salmon and to obtain the data from which the Klamath Basin Megatable totals and estimates of age composition were derived. The KRTT relied on surrogate data for estimating age composition where the sample of scales was insufficient, or altogether lacking, within a particular sector.

Estimates of age composition were based on random samples of scales (Table 2) whenever possible. Generally, each scale is aged independently by two trained readers. In cases of disagreement, a third read is used to arbitrate. Statistical methods (Cook and Lord 1978, Cook 1983, Kimura and Chikuni 1987) were used to correct the reader-assigned age composition estimates for potential bias based on the known-age vs. read-age validation matrices. The method used to combine the random sample's known ages (for CWT fish) and unknown read ages for estimation of the escapement or harvest age composition is described in Appendix A.

For cases in which scales were believed to be non-representative of the age-2 component, the KRTT has relied on analysis of length-frequency histograms. In such cases, all fish less than or equal to a given fork-length "cutoff" were assumed to be age-2, and all fish greater than the cutoff length were assumed to be adults. The cutoff value could vary by sector, and is generally based on location of the length-frequency nadir and, if appropriate, the length-frequency of known-age fish. Scales are then used to estimate the age composition of adults (Appendix A). For the 2021 run, there were no instances where the KRTT relied on a fork length cutoff to determine the number of age-2 fish. Scales were used to apportion all age classes in each sector.

An indirect method was used to estimate age composition for natural spawners in the Trinity River above the Willow Creek Weir (WCW). Age-specific numbers of fall Chinook Salmon that immigrated above WCW were estimated by applying the age composition from scales collected at the weir to the estimate of total abundance above the weir. Next, the age composition of returns to Trinity River Hatchery and the harvest above WCW were estimated. The age composition of natural spawners above the weir was then estimated as the age-specific abundances above the WCW, minus the age-specific hatchery and harvest totals.

In 2021, as in run years 2018-2020, redd surveys were performed on the mainstem Klamath River from Persido Bar to Big Bar, reaches where surveys generally had not occurred prior to 2018. The KRTT decided to not include results from this survey in 2018 and 2019 because inclusion of this survey would not be consistent with the set of surveys that have contributed to the long term

Klamath River fall Chinook dataset that has been used to inform the estimation of biological reference points and parameterize the Klamath Ocean Harvest Model. However, after further discussion, the KRTT decided to include the results of this survey in 2020, and again for the 2021 run. Justification for this decision included an apparent increase in lower mainstem spawning and the desire to capture this contribution to the run size for future estimation of biological reference points.

The specific protocols used to develop estimates of age composition for each sector are provided in Table 3. A summary of the KRTT methods specific to each sector is given in Appendix B for the Klamath River and Appendix C for the Trinity River.

Results

A total of 8,905 scales from 16 different sectors were aged for this analysis (Table 2). Of these, 1,044 were from known-age CWT fish. Known-age scales provide a direct check, or "validation", of accuracy of the scale-based age estimates (Table 4, Appendices D and E). The scale-based ages were, in general, less accurate in 2021 than prior years. Accuracy within the Trinity Basin was 85% for age-2 fish, 98% for age-3 fish, and 73% for age-4 fish. Accuracy within the Klamath River Basin was 95% for age-2 fish, 86% for age-3 fish, and 71% for age-4 fish (Table 4). The statistical bias-adjustment methods employed are intended to correct for scale-reading bias, but the methods assume that the known-age versus read-age validation matrices are themselves well estimated (Kimura and Chikuni 1987).

Table 5 presents estimates of age-specific returns to Basin hatcheries and spawning grounds, as well as Basin harvest by tribal and recreational fisheries and the drop-off mortality associated with those fisheries. Table 6 displays the Table 5 estimates as proportions. Calculations underlying the results summarized in Table 5 are presented in Appendix F.

Marking and tagging of Chinook Salmon releases from Trinity River Hatchery did not occur for brood year 2019 due to restrictions related to COVID-19. As such, there were no known-age CWT fish from the Trinity River Hatchery returning to the Basin in 2021. Methods needed to be developed to (1) infer the Trinity River Hatchery proportion of age-2 escapement and catch to the Trinity River and Lower Klamath River (below Weitchpec) and (2) account for a lack of known-age 2 returns to the Trinity River for use in scale validation matrices. Appendix G describes the method used to infer the contribution of Trinity River Hatchery age-2 fish to escapement and harvest sectors in the Trinity and lower Klamath rivers. Appendix H described how known-age CWT fish were included in scale validation matrices for the Klamath and Trinity basins.

Stream surveys in the Salmon River effectively ended early in the 2021 spawning season due to high flow events. In addition, there were no surveys of Wooley Creek in 2021. Methods used to estimate escapement to the Salmon River system, including Wooley Creek, are described in Appendix I.

The final estimates of the 2020 Klamath Basin age composition are presented in Appendix J.

List of Acronyms and Abbreviations

ad-clipped adipose fin removed

CDFW California Department of Fish and Wildlife

CWT coded-wire tag

EST Klamath River estuary

FL fork length

HVT Hoopa Valley Tribe IGH Iron Gate Hatchery

KRTAT Klamath River Technical Advisory Team

KRTT Klamath River Technical Team

KT Karuk Tribe

LRC Lower Klamath River Creel
MKWC Mid-Klamath Watershed Council

M&U Klamath River below Weitchpec: "middle" section (Hwy 101–Surpur Cr.) and "upper"

section (Surpur Cr.—Trinity River)

NCRC Northern California Resource Center QVIR Quartz Valley Indian Reservation

SCS Siskiyou County Schools

SRCD Siskiyou Resource Conservation District SRRC Salmon River Restoration Council

TRH Trinity River Hatchery

UR TRIBS Upper Klamath River Tributaries

USFS U.S. Forest Service

USFWS U.S. Fish and Wildlife Service

WCW Willow Creek Weir

WSP AmeriCorps Watershed Stewards Program

YT Yurok Tribe

YTFP Yurok Tribal Fisheries Program

Literature Cited

- CDFW (California Department of Fish and Wildlife). 2022. Klamath River basin fall Chinook salmon spawner escapement, in-river harvest and run-size estimates, 1978–2021. Available from K. Lindke, CDFW, 5341 Ericson Way, Arcata, CA 95521.
- Cook, R.C. and G.E. Lord. 1978. Identification of stocks of Bristol Bay sockeye salmon, Oncorhynchus nerka, by evaluating scale patterns with a polynomial discriminant method. Fishery Bulletin 76:415–423.
- Cook, R.C. 1983. Simulation and application of stock composition estimators. Canadian Journal of Fisheries and Aquatic Sciences 40:2113–2118.
- Goldwasser, L., M.S. Mohr, A.M. Grover, and M.L. Palmer-Zwahlen. 2001. The supporting databases and biological analyses for the revision of the Klamath Ocean Harvest Model. Unpublished report. National Marine Fisheries Service, Santa Cruz, CA.
- Kimura, D.K. and Chikuni, S. 1987. Mixtures of empirical distributions: an iterative application of the age-length key. Biometrics 43:23–35.
- KRTT (Klamath River Technical Team). 2022. Ocean abundance projections and prospective harvest levels for Klamath River fall Chinook, 2021 season. Available from the Pacific

Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR 97220-1384. http://www.pcouncil.org/salmon/background/document-library

Mohr, M.S. 2006a. The cohort reconstruction model for Klamath River fall Chinook salmon. Unpublished report. National Marine Fisheries Service, Santa Cruz, CA.

Mohr, M.S. 2006b. The Klamath Ocean Harvest Model (KOHM): model specification. Unpublished report. National Marine Fisheries Service, Santa Cruz, CA.

Klamath River Technical Team Participants

California Department of Fish and Wildlife

Morgan Knechtle Domenic Giudice Ken Lindke Dan Troxel Mary Claire Kier Grace Easterbrook

Hoopa Valley Tribe

George Kautsky Bob Campbell Bryan Lester Karl Seitz

National Marine Fisheries Service Michael O'Farrell

U.S. Fish and Wildlife Service Stephen Gough

U.S. Forest Service LeRoy Cyr

Yurok Tribe
Desma Williams
Keith Parker

Acknowledgements

The Klamath River Technical Team thanks the following individuals for their expert assistance in compiling and reviewing the data for this report. From the California Department of Fish and Wildlife we thank Wade Sinnen, Kandice Morgenstern, and Pete McHugh. The Yurok Tribe and U.S. Fish and Wildlife Service performed the scale reading analysis for the Klamath River while the Hoopa Valley Tribe performed the scale reading analysis for the Trinity River. Scale collections were provided by the California Department of Fish and Wildlife, Hoopa Valley Tribe, U.S. Fish and Wildlife Service, U.S. Forest Service, and Yurok Tribe.

Table 1. Estimation and sampling methods used for the 2021 Klamath River fall Chinook run assessment.

Sampling Location	Estimation and Sampling Methods	Agency
Hatchery Spawners		00000
Iron Gate Hatchery (IGH)	Direct count. All fish examined for fin-clips, tags, and marks. Bio-samples ^a collected from from at a systematic random sample rate of 1:5 (20%). Additionally, ad-clipped males <50 cm FL were bio-sampled opportunistically.	CDFW, WSP
Trinity River Hatchery (TRH)	Direct count. All fish bio-sampled and examined for fin-clips, tags, and marks. Scales collected from fish at a systematic random sample rate of 1:5 (20%).	CDFW, HVT
<u>Natural Spawners</u> Salmon River Basin	Redd, carcass, and dive surveys in the upper and lower mainstem and tributaries. Total redds estimated by extrapolating redds counted up through JW 42, based on historical redd deposition rate since 1998. Additionally, the Wooley Creek redd count was estimated using the historical ratio of redds there versus the rest of the Salmon River basin (Appendix C). Total run based on expanded redd count and last day live adults (2*total redd count + last day live adults)/(1-proportion of jacks). Bio-samples collected from all carcasses recovered.	CDFW, USFS, USFWS, KT, SRRC, SCS, WSP, MKWC, NCRC
Scott River Basin	Combination ARIS acoustic and video count above Fish Counting Facility at River Mile 18.2 and twice weekly redd and carcass surveys above and below the counting station. Total run estimated by adding ARIS and video count to (2*total redd count)/(1-proportion jacks) downstream of the counting station. Bio-samples collected from all recovered carcasses.	CDFW, QVIR, USFS, KT, NCRC, SRCD, WSP
Shasta River Basin	Video count above weir. Bio-samples collected from carcasses stranded on weir at a systematic random sample rate of (1:5) 20% and from all fish captured in a trap immediately upstream of video chute.	CDFW, WSP
Bogus Creek Basin	Video count above weir and twice weekly direct carcass count below weir. Bio-samples collected opportunisitcally from carcasses observed during surveys above and below weir, including all ad-clipped fish.	CDFW, WSP
Klamath River mainstem (IGH to Shasta R.)	Hierarchical Latent Variable Model from weekly mark-recapture carcass surveys. Bio-samples collected from all fresh carcasses encountered.	USFWS, YT
Klamath River mainstem (Shasta R. to Wingate Bar)	Weekly redd surveys. Total run = (2*total redd count)/(1-proportion jacks). Jacks estimated from Klamath River mainstem (IGH to Shasta R.) scale-age data.	USFWS, KT
Klamath Tributaries above Trinity	Periodic redd surveys. Total run = (2*total redd count + last day live adults)/(1-proportion jacks). Jacks estimated from Klamath tributary scale-age data. Bio-samples collected from all carcasses recovered.	USFS, CDFW, KT, MKWC, WSP
Blue Creek	Total estimated using the maximum count from dive surveys conducted between 16 November and 7 December.	YT
Trinity River (mainstem above WCW)	Mark-recapture (unstratified Petersen); marks applied at WCW and recovered at TRH. All fish bio-sampled and scales collected from every other Chinook in good condition. Natural area spawning escapement estimated by subtracting age-specific estimates of hatchery returns and recreational harvest above WCW from age-specific estimates of the total run upstream of WCW.	CDFW, HVT
Trinity River (mainstem below WCW)	Bi-weekly redd surveys. Total run = (2*total redd count)/(1-proportion jacks) using proportion of jacks in natural area spawning in Trinity River mainstem above WCW.	HVT, USFWS
Trinity Tributaries (above Reservation; below WCW)	Periodic redd surveys. Total run = (2*total redd count + last day live adults)/(1-proportion jacks) using proportion of jacks in natural area spawning in Trinity River mainstem above WCW.	CDFW, USFS, WSP
Hoopa Reservation Tributaries	Periodic redd surveys. Total run = (2*total redd count)/(1-proportion jacks) using proportion of jacks in natural area spawning in Trinity River mainstem above WCW.	HVT
Recreational Harvest Klamath River (below Hwy 101 bridge)	Jack and adult estimates based on access point and roving creel survey during 3 randomly selected days per Julian week through JW 39, then 2 days per week starting on JW 40. Bio-samples collected during angler interviews.	CDFW
Klamath River (Hwy 101 to Weitchpec)	Jack and adult estimates based on access point and roving creel survey during 3 randomly selected days per Julian week through JW 39, then 2 days per week starting on JW 40. Bio-samples collected during angler interviews.	CDFW
Klamath River (Weitchpec to IGH)	No survey. Upper Klamath adult harvest estimated using the ratio of lower river to total adult river harvest during the years 1999-2002 (Appendix B). Jacks estimated from IGH, Klamath mainstem, Shasta River, and Bogus Creek weighted average age compositions.	CDFW
Trinity River Basin (above WCW)	Jack and adult harvest estimates based on estimated harvest rates from angler return of reward and non-reward tags applied at WCW.	CDFW, HVT
Trinity River Basin (below WCW)	Roving access creel survey during three randomly selected days per statistical week stratified by weekdays (M-Th) and weekend (F-Su) days (1 weekday and 2 weekend). Bio-samples collected during angler interviews.	HVT
Tribal Harvest		
Klamath River (below Hwy 101)	Daily harvest estimates based on effort and catch-per-effort surveys. Bio-samples collected during harvest surveys.	YT
Klamath River (Hwy 101 to Trinity mouth)	Daily harvest estimates based on effort and catch-per-effort surveys. Bio-samples collected during harvest surveys.	YT
Trinity River (net and hook-and-line)	Roving effort and catch-per-effort surveys during four randomly selected days per statistical week for the net fishery, and three randomly selected days for the hook-and-line fishery, plus census count of hook-and-line and net fishery downstream of harvest weir to Tish Tang Creek. Bio-samples collected during harvest surveys.	HVT
Trinity River (harvest weir)	Direct count of all harvested fish. Bio-samples collected from all harvested fish.	HVT
<u>Fishery Dropoff Mortality</u> Recreational Angling Dropoff Mortality	Not directly estimated. Assumed rate relative to fishery impacts = .02; relative to fishery harvest = .02/(102).	KRTAT
2.04%		

^a Bio-samples generally includes: fork length, scale, sex, tags or marks, and CWT recovery from dead ad-clipped fish.

Table 2. Scale sampling locations and numbers of scales collected for the 2021 Klamath Basin fall Chinook age-composition assessment.

		Aged			
_	Unknown-age	e a/		 Total	
Sampling Location	d/	Known-age ^{b/}	Total	Collected ^{c/}	Agency
Hatchery Spawners					
Iron Gate Hatchery (IGH)	725	157	882	1,457	CDFW
Trinity River Hatchery (TRH)	896	265	1161	1,189	HVT
Natural Spawners					
Salmon River Carcass Survey	22	0	22	22	CDFW
Scott River Carcass Survey	146	0	146	148	CDFW
Shasta River Carcass	355	3	358	385	CDFW
Bogus Creek	517	61	578	600	CDFW
Klamath River mainstem	608	25	633	662	USFWS
Upper Klamath River tributaries	40	0	40	43	USFS
Blue Creek Snorkle	8	0	8	8	YT
Willow Creek Weir	1,377	74	1451	1,652	HVT
Lower Trinity River Carcass	0	0	0	0	HVT
Lower Trinity River tributaries	0	0	0	0	HVT
Recreational Harvest					
Lower Klamath River Creel	681	56	737	753	CDFW
Lower Trinity River Creel	15	1	16	40	HVT
Tribal Harvest					
Klamath River (below Hwy 101)	449	61	510	617	YT
Klamath River (Hwy 101 to Trinity R)	668	84	752	753	YT
Trinity River (Hoopa Reservation)	1,017	201	1218	1,611	HVT
Hoopa Weir	337	56	393	453	HVT
TOTAL	7,861	1,044	8,905	9,940	

a/ Scales from non-ad-clipped fish and ad-clipped fish without CWTs, mounted and read.b/ Scales from all mounted and aged ad-clipped CWT fish; non-random CWT fish used for validation but not age composition.

c/ Scales collected from the area.

d/ Weir washback collected scales were read but not used.

Table 3. Age-composition methods used for the 2021 Klamath Basin Chinook Salmon fall run assessment.

Sampling Location **Age Composition Method Hatchery Spawners** Iron Gate Hatchery (IGH) Jack/adult structure from scale-age analysis. Trinity River Hatchery (TRH) Jack/adult structure from scale-age analysis. **Natural Spawners** Salmon River Basin Jack/adult structure from scale-age analysis. Scott River Basin Jack/adult structure from scale-age analysis. Shasta River Basin

Jack/adult structure from scale-age analysis. **Bogus Creek Basin** Jack/adult structure from scale-age analysis. Klamath River mainstem (IGH to Shasta R.) Jack/adult structure from scale-age analysis.

Klamath River mainstem (Shasta R. to Wingate Bar) Surrogate: Klamath mainstem (IGH to Shasta R.) age structure.

Klamath River mainstem (Persido Bar to Big Bar) Surrogate: Klamath mainstem (Persido Bar to Big Bar) and tributaries (Rock,

Red Cap, and Camp creeks) age structure.

Klamath tributaries (above Trinity R.) Jack/adult structure from scale-age analysis.

Blue Creek Jacks estimated through direct observation. Unweighted average of scale-

based adult age structure from Blue Creek in 2007-2009, 2011-2015, 2017,

and 2020.

Jack/adult structure derived from subtracting age-specific TRH counts and Trinity River Basin (above WCW)

recreational harvest estimate above WCW from the age-specific total run

estimate above WCW derived from scale-age analysis.

Trinity River mainstem (below WCW) Surrogate: jack/adult structure from Trinity River (above WCW). Trinity tributaries (above Reservation to WCW) Surrogate: jack/adult structure from Trinity River (above WCW). Surrogate: jack/adult structure from Trinity River (above WCW). Hoopa Reservation Tributaries

Recreational Harvest

Klamath River (below Hwy 101) Jack/adult structure from scale-age analysis. Klamath River (Hwy 101 to Weitchpec) Jack/adult structure from scale-age analysis.

Klamath River (Weitchpec to IGH) Surrogate: jack/adult weighted average age proportions from Shasta River,

IGH, Bogus Creek, and mainstem Klamath (IGH to Shasta R.).

Trinity River Basin (above WCW) Jack component based on estimated jack harvest rate and total jack run

estimate. Adult age structure surrogate from Trinity River recreational harvest

below WCW.

Trinity River Basin (below WCW) Jack/adult structure from scale-age analysis.

Tribal Harvest

Klamath River (below Hwy 101) Jack/adult structure from scale-age analysis. Klamath River (Hwy 101 to Trinity mouth) Jack/adult structure from scale-age analysis. Trinity River (net and hook-and-line) Jack/adult structure from scale-age analysis. Trinity River (harvest weir) Jack/adult structure from scale-age analysis.

Ich Disease Monitoring

Klamath-Trinity Basin Jack/adult structure from scale-age analysis.

Table 4a. 2021 Klamath River Basin scale validation matrices

Numbe	<u>r</u>		Known Age)		
	<u> </u>	2	3	4	5	
	2	41	17	0	0	
Read	3	2	249	25	0	
Age	4	0	25	61	0	
	5	0	0	0	0	Total
	Total	43	291	86	0	420
Percen	<u>tage</u>		Known Age	;		
		2	3	4	5	
	2	0.95	0.06	0.00	0.00	
Read	3	0.05	0.86	0.29	0.00	
Age	4	0.00	0.09	0.71	0.00	
	5	0.00	0.00	0.00	1.00	
	Total	1.00	1.00	1.00	1.00	

Table 4b. 2021 Trinity River Basin scale validation matrices.

Number			Known Age	•		
		2	3	4	5	
	2	29	7	0	0	
Read	3	5	501	14	0	
Age	4	0	4	37	0	
	5	0	0	0	1	Total
7	Γotal	34	512	51	1	598
Percenta	age		Known Age	:		
		2	3	4	5	
	2	0.85	0.01	0.00	0.00	
Read	3	0.15	0.98	0.27	0.00	
Age	4	0.00	0.01	0.73	0.00	
	5	0.00	0.00	0.00	1.00	
l -		4.00	1 00	1.00	1.00	
	Γotal	1.00	1.00	1.00	1.00	

Table 5. Age composition of the 2021 Klamath Basin fall Chinook run.

1/16/2022

	_	_	AGE		Total	Total
Escapement & Harvest	2	3	4	5	Adults	Run
Hatchery Spawners						
Iron Gate Hatchery (IGH)	494	4,862	2,096	54	7,012	7,506
Trinity River Hatchery (TRH)	129	5,523	315	0	5,838	5,967
Hatchery Spawner subtotal	623	10,385	2,411	54	12,850	13,473
Natural Spawners	060	720	4 450	0	1 000	0.450
Salmon River Basin Scott River Basin	263 655	738 344	1,152 962	0 0	1,890 1,307	2,153 1,962
Shasta River Basin	927	1,676	4,273	23	5,972	6,899
Bogus Creek Basin	423	961	1,281	11	2,253	2,676
Klamath River mainstem (IGH to Shasta R.)	343	946	809	7	1,762	2,105
Klamath River mainstem (Ash Cr. to Wingate Bar)	468	1,280	1,095	9	2,384	2,852
Klamath Tributaries (above Trinity River)	179	620	383	0	1,003	1,182
Blue Creek	<u>25</u>	<u>32</u>	<u>79</u>		<u>119</u>	144
Klamath Basin subtotal	3,283	6,597	10,034	<u>8</u> 58	16,690	19,973
Trinity River (mainstem above WCW)	3,256	12,058	870	0	12,928	16,184
Trinity River (mainstem below WCW)	18	66	5	0	70	88
Trinity Tributaries (above Reservation; below WCW)	33	121	9	0	130	163
Hoopa Reservation tributaries	<u>32</u>	<u>116</u>	<u>8</u>	<u>0</u>	<u>124</u>	<u>156</u>
Trinity Basin subtotal	3,339	12,361	892	<u>0</u> 0	13,252	16,591
Natural Spawners subtotal	6,622	18,958	10,926	58	29,942	36,564
Total Spawner Escapement	7,245	29,343	13,337	112	42,792	50,037
Recreational Harvest						
Klamath River (below Hwy 101 bridge)	138	100	147	2	249	
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec)	2,161	728	166	6	900	3,061
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH)	2,161 74	728 287	166 288	6 4	900 579	3,061 653
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW)	2,161 74 8	728 287 479	166 288 3	6 4 0	900 579 482	387 3,061 653 490
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW)	2,161 74 8 16	728 287 479 55	166 288 3 0	6 4 0 0	900 579 482 55	3,061 653 490 71
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW)	2,161 74 8	728 287 479	166 288 3	6 4 0	900 579 482	3,061 653
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW)	2,161 74 8 16	728 287 479 55	166 288 3 0	6 4 0 0	900 579 482 55	3,061 653 490 71
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101)	2,161 74 8 16	728 287 479 55	166 288 3 0	6 4 0 0	900 579 482 55	3,061 653 490 71
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth)	2,161 74 8 16 2,397 17 144	728 287 479 55 1,649 1,089 1,540	166 288 3 0 604 1,496 1,249	6 4 0 0 12	900 579 482 55 2,265 2,598 2,842	3,061 653 490 71 4,662 2,615 2,986
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line)	2,161 74 8 16 2,397 17 144 136	728 287 479 55 1,649 1,089 1,540 1,591	166 288 3 0 604 1,496 1,249 566	6 4 0 0 12 13 53 0	900 579 482 55 2,265 2,598 2,842 2,156	3,061 653 490 71 4,662 2,615 2,986 2,292
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line) Trinity River (harvest weir)	2,161 74 8 16 2,397 17 144 136 315	728 287 479 55 1,649 1,089 1,540 1,591 428	166 288 3 0 604 1,496 1,249 566 42	6 4 0 0 12 13 53 0 0	900 579 482 55 2,265 2,598 2,842 2,156 470	3,061 653 490 71 4,662 2,615 2,986 2,292 785
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line)	2,161 74 8 16 2,397 17 144 136	728 287 479 55 1,649 1,089 1,540 1,591	166 288 3 0 604 1,496 1,249 566	6 4 0 0 12 13 53 0	900 579 482 55 2,265 2,598 2,842 2,156	3,061 653 490 71 4,662 2,615 2,986 2,292
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line) Trinity River (harvest weir)	2,161 74 8 16 2,397 17 144 136 315	728 287 479 55 1,649 1,089 1,540 1,591 428	166 288 3 0 604 1,496 1,249 566 42	6 4 0 0 12 13 53 0 0	900 579 482 55 2,265 2,598 2,842 2,156 470	3,061 653 490 71 4,662 2,615 2,986 2,292 785
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line) Trinity River (harvest weir) Subtotals Total Harvest	2,161 74 8 16 2,397 17 144 136 315 612	728 287 479 55 1,649 1,089 1,540 1,591 428 4,648	166 288 3 0 604 1,496 1,249 566 42 3,353	6 4 0 0 12 13 53 0 0	900 579 482 55 2,265 2,598 2,842 2,156 470 8,066	3,061 653 490 71 4,662 2,615 2,986 2,292 785 8,678
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line) Trinity River (harvest weir) Subtotals	2,161 74 8 16 2,397 17 144 136 315 612	728 287 479 55 1,649 1,089 1,540 1,591 428 4,648	166 288 3 0 604 1,496 1,249 566 42 3,353	6 4 0 0 12 13 53 0 0	900 579 482 55 2,265 2,598 2,842 2,156 470 8,066	3,061 653 490 71 4,662 2,615 2,986 2,292 785 8,678
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line) Trinity River (harvest weir) Subtotals Total Harvest Totals	2,161 74 8 16 2,397 17 144 136 315 612 3,009	728 287 479 55 1,649 1,089 1,540 1,591 428 4,648 6,297	166 288 3 0 604 1,496 1,249 566 42 3,353 3,957	6 4 0 0 12 13 53 0 0 66 78	900 579 482 55 2,265 2,598 2,842 2,156 470 8,066 10,331	3,061 653 490 71 4,662 2,615 2,986 2,292 785 8,678 13,340
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line) Trinity River (harvest weir) Subtotals Total Harvest Totals Harvest and Escapement	2,161 74 8 16 2,397 17 144 136 315 612 3,009	728 287 479 55 1,649 1,089 1,540 1,591 428 4,648 6,297	166 288 3 0 604 1,496 1,249 566 42 3,353 3,957	6 4 0 0 12 13 53 0 0 0 66 78	900 579 482 55 2,265 2,598 2,842 2,156 470 8,066 10,331	3,061 653 490 71 4,662 2,615 2,986 2,292 785 8,678 13,340
Klamath River (below Hwy 101 bridge) Klamath River (Hwy 101 to Weitchpec) Klamath River (Weitchpec to IGH) Trinity River Basin (above WCW) Trinity River Basin (below WCW) Subtotals Tribal Harvest Klamath River (below Hwy 101) Klamath River (Hwy 101 to Trinity mouth) Trinity River (net and hook-and-line) Trinity River (harvest weir) Subtotals Total Harvest Totals Harvest and Escapement Recreational Angling Dropoff Mortality 2.04%	2,161 74 8 16 2,397 17 144 136 315 612 3,009	728 287 479 55 1,649 1,089 1,540 1,591 428 4,648 6,297	166 288 3 0 604 1,496 1,249 566 42 3,353 3,957	6 4 0 0 12 13 53 0 0 66 78	900 579 482 55 2,265 2,598 2,842 2,156 470 8,066 10,331 53,124 46	3,061 653 490 71 4,662 2,615 2,986 2,292 785 8,678

Table 6. Age proportion of the 2021 Klamath Basin fall Chinook run.

			405	
Facement 9 Homest	2	2	AGE	_
Escapement & Harvest	2	3	4	5
Hatchery Spawners				
Iron Gate Hatchery (IGH)	0.07	0.65	0.28	0.01
Trinity River Hatchery (TRH)	0.07	0.93	0.25	0.00
Hatchery Spawner subtotal	0.05	0.77	0.18	0.00
Trateriory oparities custotal	0.00	0.7.1	0.10	0.00
Natural Spawners				
Salmon River Basin	0.12	0.34	0.54	0.00
Scott River Basin	0.33	0.18	0.49	0.00
Shasta River Basin	0.13	0.24	0.62	0.00
Bogus Creek Basin	0.16	0.36	0.48	0.00
Klamath River mainstem (IGH to Shasta R.)	0.16	0.45	0.38	0.00
Klamath River mainstem (Ash Cr. to Wingate Bar)	0.16	0.45	0.38	0.00
Klamath tributaries (above Trinity River)	0.15	0.52	0.32	0.00
Yurok Reservation tributaries	0.17	0.22	<u>0.55</u>	0.06
Klamath Basin subtotal	0.16	0.33	0.50	0.00
Trinity River (mainstem above WCW)	0.20	0.75	0.05	0.00
Trinity River (mainstem below WCW)	0.20	0.75	0.05	0.00
Trinity tributaries (above Reservation)	0.20	0.75	0.05	0.00
Hoopa Reservation tributaries	0.21	0.74	0.05	0.00
Trinity Basin subtotal	0.20	0.75	0.05	0.00
	00			
Natural Spawners subtotal	0.18	0.52	0.30	0.00
Total Spawner Escapement	0.14	0.59	0.27	0.00
Recreational Harvest				
Klamath River (below Hwy 101 bridge)	0.36	0.26	0.38	0.01
Klamath River (Hwy 101 to Weitchpec)	0.71	0.24	0.05	0.00
Klamath River (Weitchpec to IGH)	0.11	0.44	0.44	0.01
Trinity River Basin (above WCW)	0.02	0.98	0.01	0.00
Trinity River Basin (below WCW)	0.23	0.77	0.00	0.00
Subtotals	0.51	0.35	0.13	0.00
<u>Tribal Harvest</u>				
Klamath River (below Hwy 101)	0.01	0.42	0.57	0.00
Klamath River (Hwy 101 to Trinity mouth)	0.05	0.52	0.42	0.02
Trinity River (net and hook-and-line)	0.06	0.69	0.25	0.00
Trinity River (harvest weir)	<u>0.40</u>	<u>0.55</u>	<u>0.05</u>	0.00
Subtotals	0.07	0.54	0.39	0.01
Total Harvest	0.23	0.47	0.30	0.01
T-4-1-				
Totals	0.40	0.50	0.07	0.00
Harvest and Escapement	0.16	0.56	0.27	0.00
Recreational Angling Dropoff Mortality 2.04%	0.52	0.36	0.13	0.00
Tribal Net Dropoff Mortality 8.7%	0.04	0.53	0.42	0.01
Total River Run	0.16	0.56	0.27	0.00
	55	5.55	·-·	5.55

Appendix A: Estimation of escapement age-composition from a random sample containing known-age (CWT) and unknown read-age fish.

Denote the escapement at age as $\{N_a, a = 2, 3, 4, 5\}$, $N = \sum N_a$, and for the random sample of size (n + m) fish, denote the following quantities:

- known-age fish: number at age $\{n_a, a=2,3,4,5\}$, $n=\sum n_a$, $p_a=n_a/n$.
- unknown read-age fish: number at age $\{m_a, a=2,3,4,5\}$, $m=\sum m_a$, $r_a=m_a/m$.
- bias-corrected unknown read-age proportions: $\{r_a^*, a = 2, 3, 4, 5\}, r_A^* = r_3^* + r_4^* + r_5^*$
- age-2 proportion as estimated by size-frequency: s₂.
- 1. Age 2–5 escapement by scales. Estimate N_a as the sample of known-age a fish plus the unknown age portion of the escapement times the estimated age a proportion (bias-corrected):

$$N_a = np_a + (N-n)r_a^*$$
, $a = 2,3,4,5$.

2. Age-2 escapement by size-frequency; age 3–5 escapement by scales. Estimate N_2 as the total escapement times the size-frequency based estimated age-2 proportion. Estimate N_a for a = 3,4,5 as the sample known-age a fish plus the unknown age portion of the adult escapement times the age a proportion among adults (bias-corrected):

$$N_{a} = \begin{cases} Ns_{2}, & a = 2\\ np_{a} + [N(1-s_{2}) - n(1-p_{2})](r_{a}^{*}/r_{A}^{*}), & a = 3,4,5 \end{cases}$$

Appendix B: Klamath River – 2021 methodology details.

Iron Gate Hatchery (IGH)

Escapement to IGH is a direct count of the number of fall Chinook Salmon entering the hatchery over the duration of the spawning season. A systematic random bio-sample was obtained from every fifth Chinook Salmon returning to IGH. Heads were also collected for CWT analysis from all ad-clipped fish. Scale-based age compositions were used to apportion all age classes.

Bogus Creek

Escapement was estimated by summing carcasses encountered during spawning ground surveys below the video weir and videography counts above the weir. Spawning ground surveys were also conducted upstream of the weir. Bio-samples were collected from every carcass encountered downstream of the weir. Bio-samples were collected opportunistically upstream of the weir. Scale-based age compositions were used to apportion all age classes.

Shasta River

Escapement was estimated by videography as the net count of fish moving upstream (total observed moving upstream minus total moving downstream). Bio-samples were obtained from a 1:5 systematic sample of carcasses that washed back onto the counting weir. A trap was also installed on the upstream end of the video flume to bolster scale sample collection for a total of 97.5 hours of effort between September 16 and October 21. Every fish was bio-sampled from the video flume trap. Three ad-clipped fish were recovered as washbacks, two of which were decoded. Scale-based age compositions from samples collected from the trap were used to apportion all age classes.

Scott River

Independent estimates from above and below the weir were combined to estimate total escapement. Escapement above the weir was estimated using SONAR and videography as the net count of fish moving upstream. During periods when the monitoring station was inoperable (18.25 hours in total), fish passage was interpolated by averaging the two days prior and two days following the outage. Escapement below the weir was calculated by expanding total redd counts (redds X 2) from twice weekly surveys. Total escapement below the weir was then estimated by expanding adult escapement by the scale-based age-2 proportion from the upper reach. Bio-samples were obtained from all non-deteriorated carcasses recovered above and below the weir. Scale-based age compositions were used to apportion all age classes.

Salmon River

Adult escapement estimated using a redd ratio estimator. Total redds were estimated by utilizing observed redd deposition through Julian Week 42 and expanding by the mean annual proportion observed though Julian Week 42 from years 1998 through 2020 (excluding 2005, 2010, 2013, 2016, 2017 and 2020), then applying the standard redd-based population estimator (total # of redds X 2, then adding the number of live adult fish observed on the last survey). Additionally, Wooley Creek redd counts were estimated by using the historical ratio of redd counts in the entire Salmon River Basin (inclusive of Wooley Creek) and the Salmon River Basin excluding Wooley Creek (Appendix I). Total escapement was then estimated by expanding adult escapement by the scale-based age-2 proportion. Bio-samples were obtained from recovered carcasses. Scale-based age compositions were used to apportion all age classes.

Klamath River Tributaries

Adult escapement was estimated by expanding the total redd count (redds X 2) and then adding the number of live adult fish observed on the last survey. Total escapement was then estimated by expanding adult escapement by the scale-based age-2 proportion. Scale-based age compositions were used to apportion all age classes.

Klamath River Mainstem (IGH to Shasta River)

A hierarchical latent variables model based on weekly carcass counts and mark-recapture data was used to estimate escapement. All surveyed fresh carcasses were bio-sampled. Scale-based age proportions were used to assign all age classes.

Klamath River Mainstem (Ash Creek to Wingate Bar)

Adult escapement was estimated by expanding total redd counts (redds X 2) from weekly surveys. Total escapement was then estimated by expanding adult escapement by the scale-based age-2 proportion from the upper reach. Age assignments were based on age proportions from scales collected in the IGH-Shasta reach.

Klamath River Mainstem (Persido Bar to Big Bar)

Adult escapement was estimated by expanding total redd counts (redds X 2) from single pass survey. Total escapement was then estimated by expanding adult escapement by the scale-based age-2 proportion from mainstem (Persido Bar to Big Bar) and tributaries (Rock, Camp and Red Cap Creeks). Age assignments were based on age proportions from scales collected in the same areas.

Lower Klamath River Creel

Total harvest was estimated by combining creel estimates from the two sub-areas (above the Highway 101 Bridge to Weitchpec and below the Highway 101 Bridge to the mouth). In each sub-area, jack and adult estimates were based on access point and roving creel surveys during three randomly selected days per Julian week (JW) through JW 39, then two days per week starting on JW 40. Bio-samples were collected from every fish possible during angler interviews. Scale-based age proportions from scale samples were used to apportion all age classes in each sub-area.

Upper Klamath River Recreational Fishery

A creel survey in this sub-area was not conducted in 2021. Creel data were available for the lower and upper river fisheries from 1999 to 2002. The ratio of average adult harvest in the entire Klamath mainstem to average harvest in the lower Klamath River creel area from these years was applied to the 2021 lower Klamath River creel harvest to estimate total adult harvest in the Klamath River mainstem. Adult harvest for the upper Klamath River recreational fishery was then estimated by subtracting the estimated lower Klamath River creel estimate from the Klamath mainstem total harvest. Finally, the combined adult and jack harvest was obtained by dividing the adult harvest by the proportion of adults from the weighted average scale-age composition of the upper Klamath River mainstem (IGH to Shasta River), Shasta River, Bogus Creek, and IGH. This weighted scale-based age composition was used to apportion all age classes in this fishery.

Yurok Tribal Estuary Fishery (Klamath mouth to Hwy 101)

Subsistence Yurok harvest in this sub-area was estimated by hourly net-fishing effort and catch-per-effort (fish per net-hour) analyses, stratified by day and night. Scale-based age composition was used to apportion all age classes.

Yurok Tribal Fishery Above Hwy 101

Yurok harvest in this sub-area was estimated by daily net-fishing effort and catch-per-effort (fish per net-day) analyses. Scale-based age composition was used to apportion all age classes.

Blue Creek

Total escapement was estimated using the maximum single-day count from dive surveys conducted between November 16 and December 7. Bio-samples were collected from eight recovered carcasses. Jacks were identified by visual determination during dive surveys and apportioned from the total count. Adult age proportions were estimated as the unweighted average of age-specific proportions in Blue Creek from years when scales were used to apportion adult age classes (2007-2009, 2011-2015, 2017 and 2020).

Appendix C: Trinity River – 2021 methodology details.

Trinity River Natural Escapement (above WCW)

Escapement was estimated using a Petersen mark-recapture estimator. The methods used for estimating age structure within the Trinity River run above WCW was similar to those used in the population estimate, apportioned into three general recovery areas: TRH, Trinity basin natural spawning escapement above WCW, and recreational harvest. Scales were collected from every other Chinook Salmon at WCW.

The age structure for fish passing above WCW was estimated using scales collected at WCW and TRH. Age-specific abundances for all fish passing above WCW were estimated from scales collected at WCW. Next, age-specific abundances of fish returning to TRH and fish harvested in the recreational fishery were estimated. Finally, age-specific abundances from TRH and the recreational fishery were subtracted from age-specific abundances of fish passing above WCW to yield age-specific abundances of fish returning to natural spawning areas above WCW.

Trinity River Hatchery (TRH)

Escapement to TRH is a direct count of the number of fall Chinook Salmon entering the hatchery over the duration of the spawning season. Scales were sampled systematically (1:5), ad-clipped and non-ad-clipped fish included. Scale samples were used to apportion the hatchery return into age classes.

<u>Upper Trinity River Recreational Harvest</u>

The method for estimating the upper Trinity River recreational harvest depends on the application of program tags at WCW and subsequent returns by anglers. In 2021 CDFW estimated a 2.42% harvest rate on adult Chinook Salmon based on the return of program reward tags (32 of 1,320) applied at WCW. An estimated 0.68% (1 of 147 tag returns) jacks were estimated to have been harvested in 2021. No scales were recovered from this fishery since no creel survey was implemented in 2021. Adult age proportions were determined using surrogate scales aged from recreational harvest below WCW.

Lower Trinity River Creel

A roving creel survey was implemented in the Trinity River downstream of WCW. Sampling was temporally stratified by weekend (Friday-Sunday) and weekday, with sampling occurring on 2 and 1 randomly selected days per stratum, respectively. Scale samples were used to apportion all age classes.

Trinity Mainstem Natural Escapement (below WCW)

Total escapement was estimated by expanding total redd counts (redds X 2) from surveys conducted biweekly as conditions allowed and applying the jack proportion from the upper Trinity River natural escapement. No scales were collected in this sector. The upper Trinity River natural escapement age structure was used as a surrogate to apportion all ages.

Trinity Tributaries (above Reservation; below WCW)

Adult escapement was estimated by expanding total redd counts (redds X 2) and then adding the number of live adult fish observed on the last survey. Total escapement was then estimated by expanding adult escapement by the scale-based age-2 proportion from scales collected in Trinity Tributaries and Hoopa Reservation Tributaries combined. All age classes were apportioned using combined set of scales from Trinity Tributaries and Hoopa Reservation Tributaries.

Hoopa Reservation Tributaries

Total escapement was estimated by expanding total redd counts (redds X 2) and applying the jack proportion from scales collected in Trinity Tributaries and Hoopa Reservation Tributaries combined. All age classes were apportioned using combined set of scales from Trinity Tributaries and Hoopa Reservation Tributaries.

Hoopa Valley Tribal Harvest (net and hook-and-line)

Hoopa Valley Tribal member gill net and hook-and-line harvest is monitored by estimating effort and catch from three (hook-and-line) or four (gill net) randomly selected days per week. Total harvest was estimated by expanding randomly selected days and effort to weekly totals. A census of the Tribal net and hook-and-line fisheries was also implemented in the area immediately downstream of the Hoopa selective harvest weir to Tish Tang Creek. Scale-age proportions were used to apportion all ages.

Hoopa Valley Tribal Harvest (harvest weir)

Total harvest was a direct count of all Chinook Salmon taken at the weir. Scale samples were attempted to be taken from every other harvested fish. Scale-age proportions were used to apportion all ages.

Appendix D. 2021 Klamath age analysis.

Unknown scales age composition as read								
	AGE 2	AGE 3	AGE 4	AGE 5	TOTAL			
BOGUS	90	233	192	2	517			
IGH	71	460	188	6	725			
SALMON	3	10	9	0	22			
SCOTT	48	45	53	0	146			
SHASTA	43	119	139	1	302			
MAINSTEM	111	306	189	2	608			
UR TRIBS	7	22	11	0	40			
LRC EST	49	48	40	1	138			
LRC UP	375	135	32	1	543			
YTFP EST	13	225	194	2	434			
YTFP M&U	51	376	229	12	668			
BLUE CRK	1	1	6	0	8			
BEGE GIAR	862	1,980	1,282	27	<u>4,151</u>			
	002	1,000	1,202	21	1,101			
Unknown scales co	orrected age pro	portions (Kin	nura method)					
	AGE 2	AGE 3	AGE 4	AGE 5	TOTAL			
BOGUS	0.1608	0.3547	0.4806	0.0039	1.0			
IGH	0.0635	0.6402	0.2880	0.0083	1.0			
SALMON	0.1220	0.3427	0.5352	0.0000	1.0			
SCOTT	0.3341	0.1754	0.4905	0.0000	1.0			
SHASTA	0.1345	0.2427	0.6195	0.0033	1.0			
MAINSTEM	0.1640	0.4488	0.3839	0.0033	1.0			
UR TRIBS	0.1514	0.5244	0.3242	0.0000	1.0			
LRC EST	0.3565	0.2589	0.3773	0.0072	1.0			
LRC UP	0.7100	0.2333	0.0548	0.0018	1.0			
YTFP EST	0.0064	0.4082	0.5808	0.0046	1.0			
YTFP M&U	0.0487	0.5120	0.4213	0.0180	1.0			
BLUE CRK	0.2313	0.2067	0.5107	0.0512	1.0			
I/ OWT	a/							
Known CWT ages		4050	405.4	405.5	TOTAL			
DO0110	AGE 2	AGE 3	AGE 4	AGE 5	TOTAL			
BOGUS	0	29	17	1	47			
IGH	91	803	270	1	1,165			
SALMON	0	0	0	0	0			
SCOTT	0	0	0	0	0			
SHASTA	0	2	0	0	2			
MAINSTEM	0	8	7	0	15			
UR TRIBS	0	0	0	0	0			
LRC	10	21	l o	0	32			
YTFP EST	1	43	8	0	52			
YTFP M&U	0	26	4	0	30			
BLUE CRK	102	932	0 307	2	0 1,343			
Breakout within strata	102	332	301	۷	1,0 4 0			
Bogus1	0	21	16	1	38			
Bogus2	0	8	10	0	9			
LRC - lo	0	0	1 1	0	<i>9</i> 1			
LRC - mid	10	21	n	0	31			
YTFP MID	10	1	1	1	4			
YTFP UP	0	0	0	0	0			
1111 01	U	U	U	U	U			
a/ Table includes known-a	go fich whose soals	a wara nat mau	atod / road					

a/ Table includes known-age fish whose scales were not mounted / read.

Appendix E. 2021 Trinity age analysis.

VCW = Willow		no cwt age	C	Cwt Age	1	5	Total	OWTRINREC = Lo		y Recreation no cwt age	2	Cwt Age	1	5	Total
	Scale unreadable	67	0	7	1	0	75	Scale u	nreadable	cvvi aye	3 0		0 0	0	3
	2	191	4	0	0	0	195		2		0	(0	0	3
Scale	3	1125	0	67	2	0	1194	Scale	3	1	0	•	0	0	13
Ages	4	61	0	0	1	0	62	Ages	4		0	(0	0	0
82 1277	5	0	0	0	0	0	<u> </u>	1	5	4	0		0	0	1 0
1377		1444	4	74	4	0	1526	15		1	0	ŕ	0	0	19
JPAHARV = I	-	Harvest plus Tribal H no cwt age	look-and-Line C	cwt Age	4	5	T Total	RH = Trinity Rive	_	no cwt age	2	Cwt Age	4	5	Total
,	Scale unreadable	50 50	0	7	0	0	57	Scale u	nreadable	4	2 0		5 0	0	48
	2	66	0	2	0	0	68		2	3	2 16	Ļ	5 0	0	53
Scale	3	756	0	165	7	0	928	Scale	3	82	2 4	226	5 4	0	1056
Ages	4	195	0	4	23	0	222	Ages	4	4	0	(10	0	52
208	5	0	0	0	0	0	0	271	5		0	(0	0	0
1017	_	1067	0	178	30	0	1275	896	·	93	3 20	237	14	0	1209
WTRINTRIB	SS = Lower Trinity	Tribs - Includes sar	nples taken by l C	Swt Age				0				Cwt Age			
		no cwt age	2	3	4	5	TotalN	IO DATA		no cwt age	2	3	4	5	Total
,	Scale unreadable	0	0	0	0	0	0	Scale u	nreadable						
_	2	0	0	0	0	0	0	_	2						
Scale	3	0	0	0	0	0	0	Scale	3						
Ages	4	0	0	0	0	0	0	Ages	4						
0	5	0	0	0	0	0	0	0	5						
0		0	0	0	0	0	0	0			0	(0	0	0
TSEL FCTHA	ARV = Hoopa Trib	al Weir Harvest	C	Cwt Age				n				Cwt Age			
	-	no cwt age	2	3	4	5	Total N	IO DATA		no cwt age	2	3	4	5	Total
,	Scale unreadable	10	0	0	0	0	10		nreadable		_		,	J.	
	2	130	9	0	0	0	139		2						1
Scale	3	193	1	42	1	0	237	Scale	3						
Ages	4	14	0	0	3	0	17	Ages	4						
56	5	ol	0	0	0	0	0	0	5						
		0					•							0	
337	~ L	347	10	42	4	0	403	0			0	() 0	U	U
337		POOLED data from	all areas: Scale ag vith both scale ago 2	42 ge-CWT age matrix. e and CWT known a	ge.)	5	403	0 (B) Sca	ıle-CWT ag	e matrix of լ	roportions of co	3	3 4	5	U 1
337		POOLED data from (all areas: Scale aç	ge-CWT age matrix. e and CWT known a 3 7	ge.) 4 0	5 0	403		ile-CWT ag	e matrix of լ	2 0.8529	0.0137		0.0000 0.0000	
337	VAI	POOLED data from (all areas: Scale ag vith both scale ago 2	ge-CWT age matrix.	4 0 14	5 0 0	403		ile-CWT ag	e matrix of լ	2 0.8529 3 0.1471	0.0137 0.9785	0.2745	0.0000	
337		POOLED data from (all areas: Scale ag vith both scale ago 2	ge-CWT age matrix. e and CWT known a 3 7	4 ge.) 4 0 14 37 0	5 0 0 0			ile-CWT ag	e matrix of լ	2 0.8529 3 0.1471 4 0.0000	0.013 0.978 0.0078	0.2745 0.7255	0.0000 0.0000	
337	VAI	POOLED data from (all areas: Scale ag vith both scale ago 2	ge-CWT age matrix. e and CWT known a 3 7	4 0 14	5 0 0 0 0	403 0.95		ile-CWT ag	e matrix of բ	2 0.8529 3 0.1471	0.0137 0.9785	0.2745 0.7255	0.0000	
	VAI 4x4	POOLED data from (all areas: Scale againth both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0	4 0 14	5 0 0 0 0				e matrix of բ	2 0.8529 3 0.1471 4 0.0000	0.013 0.978 0.0078	0.2745 0.7255	0.0000 0.0000	
orrected Scal	4x4 le age proportion 82	POOLED data from (Includes only fish values only fish value) LIDATION MATRIX 2 3 4 5 vectors for scale-ag	all areas: Scale againth both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0	4 0 14	5 0 0 0 0			56	e matrix of բ	2 0.8529 0.1471 0.0000 5 0.0000	0.013 0.978 0.0078 0.0000 ix for ages 2,3,4,5.	0.2745 0.7255 0.0000	0.0000 0.0000	
orrected Scal own scales own scales	4x4 le age proportion 82 1377	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agriculture a	ge-CWT age matrix. e and CWT known a 3 7 501 4 0	4 0 14 37 0	5 0 0 0 0	0.95	0 0		e matrix of բ	2 0.8529 0.1471 0.0000 5 0.0000	0.013 0.978 0.0078 0.0000	0.2745 0.7255 0.0000	0.0000 0.0000	
orrected Scal own scales own scales	4x4 le age proportion 82 1377 Willow Creek Weir	POOLED data from (Includes only fish values only fish value) LIDATION MATRIX 2 3 4 5 vectors for scale-age 208 1017 Hoopa Tribal	all areas: Scale again the both scale again the both scale again to both scale again t	ge-CWT age matrix. e and CWT known a 7 501 4 0 271 896 TRH	4 0 14 37 0	5 0 0 0 1	0.95 Upper Trin	O 0 1 Lower	56	e matrix of բ	2 0.8529 0.1471 0.0000 5 0.0000 Correction Matr (Inverse of Scal	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport	0.2745 0.7255 0.0000 ion matrix.)	0.0000 0.0000 1.0000	
rrected Scal own scales own scales	4x4 le age proportion 82 1377 Willow Creek Weir WCW	POOLED data from (Includes only fish volumes onl	all areas: Scale again the both scale again the both scale again to both scale again t	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY	Lower Trinity Mainstem	REC HARV	0.95 Upper Trin NATURAL	0 0 Lower Trin Tribs	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scal 2 1.1753	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport	ion matrix.) 3 0.2745 0.7255 0.0000 4 0.0062	0.0000 0.0000 1.0000 5	
rrected Scal own scales own scales	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agrith both scale agrith both scale agrithment of the scale agrithment of	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272	Lower Trinity Mainstem 0.0000	REC HARV 0.0158	Upper Trin NATURAL 0.2012	0 0 Lower Trin Tribs 0.2014	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 2 1.1753 -0.1772	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport	ion matrix.) 3	0.0000 0.0000 1.0000 5 0.0000 0.0000	
rrected Scal own scales own scales	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977	POOLED data from (Includes only fish volumes onl	all areas: Scale again the both scale again the both scale again to both scale again t	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181	Lower Trinity Mainstem 0.0000 0.0000	REC HARV 0.0158 0.9782	Upper Trin NATURAL 0.2012 0.7451	0 0 Lower Trin Tribs 0.2014 0.7448	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales 2 1.1753 -0.1772 0.0019	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275	ion matrix.) 3	0.0000 0.0000 1.0000 5 0.0000 0.0000 0.0000	
rected Scal wn scales wn scales	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agrith both scale agriculture agricul	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547	Lower Trinity Mainstem 0.0000 0.0000 0.0000	REC HARV 0.0158 0.9782 0.0059	Upper Trin NATURAL 0.2012 0.7451 0.0538	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 2 1.1753 -0.1772	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport	ion matrix.) 3	0.0000 0.0000 1.0000 5 0.0000 0.0000	
rected Scal wn scales wn scales	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000	POOLED data from (Includes only fish values only fish value) LIDATION MATRIX 2 3 4 5 vectors for scale-age 208 1017 Hoopa Tribal NET HARV 0.0652 0.6778 0.2570 0.0000	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000	REC HARV 0.0158 0.9782 0.0059 0.0000	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000	0 0 1 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales 2 1.1753 -0.1772 0.0019	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275	ion matrix.) 3	0.0000 0.0000 1.0000 5 0.0000 0.0000 0.0000	
rected Scal wn scales wn scales	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agrith both scale agriculture agricul	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547	Lower Trinity Mainstem 0.0000 0.0000 0.0000	REC HARV 0.0158 0.9782 0.0059	Upper Trin NATURAL 0.2012 0.7451 0.0538	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales 2 1.1753 -0.1772 0.0019	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275	ion matrix.) 3	0.0000 0.0000 1.0000 5 0.0000 0.0000 0.0000	
rrected Scal wn scales wn scales	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000	POOLED data from (Includes only fish values only fish value) LIDATION MATRIX 2 3 4 5 vectors for scale-age 208 1017 Hoopa Tribal NET HARV 0.0652 0.6778 0.2570 0.0000	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000	0.95 Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000	0 0 1 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales 2 1.1753 -0.1772 0.0019	0.0137 0.9785 0.0000 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.0000	ion matrix.) 3	0.0000 0.0000 1.0000 5 0.0000 0.0000 0.0000	
erected Scal own scales own scales Age 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000	POOLED data from (Includes only fish volumes onl	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.0000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated)	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales 2 1.1753 -0.1772 0.0019 0.0000	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.0000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000	
rrected Scal own scales own scales Age 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000	POOLED data from (Includes only fish values only fish value) LIDATION MATRIX 2 3 4 5 vectors for scale-age 208 1017 Hoopa Tribal NET HARV 0.0652 0.6778 0.2570 0.0000	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000	0.95 Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000	0 0 1 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000	56	e matrix of p	2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales 2 1.1753 -0.1772 0.0019 0.0000	0.0137 0.9785 0.0000 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.0000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000	
rrected Scal own scales own scales Age 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000	POOLED data from (Includes only fish volumes onl	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.0000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 WCW age proportions 0.1498	
rrected Scal own scales own scales Age 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000	POOLED data from (Includes only fish volumes onl	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY 0 1175	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scale) 2 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.0000	ion matrix.) ion matrix. ion ma	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 WCW age proportions 0.1498 0.7977	
rrected Scal own scales own scales Age 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agrith both scale agriculture agricul	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 WCW age proportions 0.1498 0.7977 0.0525	
rrected Scal own scales own scales Age 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agrith both scale agriculture agricul	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY 0 1175 56 0	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) ion matrix. ion m	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
rrected Scal own scales own scales VAge 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agrith both scale agriculture agricul	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY 0 1175 56 0 1231	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scale) 2 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) ion matrix. ion ma	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 WCW age proportions 0.1498 0.7977 0.0525	
verrected Scales own s	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000	POOLED data from (Includes only fish volumes onl	all areas: Scale agrith both scale agrith both scale agrith both scale agriculture agricul	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV 1 1 1 4 0	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 1 4 0	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) ion matrix. ion m	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
own scales own scales own scales VAge 2 3 4 5 VTS le 2 3 4 5	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000 Willow Creek Weir WCW 0 0 0 0 0 0 0 0 0	POOLED data from (Includes only fish values only fish value) Includes only fish value on the control of the con	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35 1266	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 1 4 0	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000	56 337		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) ion matrix. ion m	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
own scales own scales own scales VAge 2 3 4 5 VTS Ie 2 3 4 5 Iknown ads # total ads	4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000 Willow Creek Weir WCW 0 0 0 0 0 0 0 0 0	POOLED data from (Includes only fish volumes onl	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35 1266 tructure.	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.0000 TI	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV 1 1 1 4 0 paper C RH + Rec above WCW+Natural	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 4 0 WTs Apportioned minus TRH #s minus TRH #s minus	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000 Hoopa Hook&Line 0 0 0 0 0 0 1 Natural Escapem nus above WCW of	56 337		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) ion matrix. ion m	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
own scales own scales own scales Age 2 3 4 5 VTS Je 2 3 4 5 Iknown ads # total ads atural Escape	### Ax4 Let age proportion 82	POOLED data from (Includes only fish values only fish val	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35 1266	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 Tiwcw proportions	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV 1 1 1 4 0 paper C RH + Rec above WCW+Natural Escapement	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 1 4 0 WTs Apportioned minus TRH #s min Escapement	Union Scannel	56 337		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
own scales own scales own scales VAge 2 3 4 5 VTS Ie 2 3 4 5 Iknown ads # total ads atural Escape	VAI 4x4 le age proportion 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000 Willow Creek Weir WCW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	POOLED data from (Includes only fish values only fish value on	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35 1266 tructure.	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 TWCW proportions 0.1498	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV 1 1 1 4 0 paper C RH + Rec above WCW+Natural Escapement 3392	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 4 0 WTs Apportioned minus TRH #s minus TRH #s minus TRH #s minus TRH #s minus Escapement 3255	Control of the second of the s	56 337		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
ovn scales own scales own scales Age 2 3 4 5 WTS ge 2 3 4 5 nknown ads # total ads atural Escape	### Ax4 Le age proportion	POOLED data from (Includes only fish values only fish val	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35 1266 tructure.	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 TI WCW proportions 0.1498 0.7977	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV 1 1 1 4 0 paper C RH + Rec above WCW+Natural Escapement 3392 18061	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 4 0 WTs Apportioned minus TRH #s min Escapement 3255 12059	0 0 1 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000 1.00000 0 0 0 0 0 0 0 0	56 337		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
own scales own scales own scales VAge 2 3 4 5 WTS Je 2 3 4 5 Iknown ads # total ads Itural Escape	VAI 4x4 le age proportion 9 82 1377 Willow Creek Weir WCW 0.1498 0.7977 0.0525 0.0000 1.00000 Villow Creek Weir WCW 0 0 0 0 0 0 0 0 0 0 0 Rement, Trinity bas	POOLED data from (Includes only fish values only fish value) (Includes only	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35 1266 tructure.	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 TWCW proportions 0.1498 0.7977 0.0525	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV 1 1 1 4 0 paper C RH + Rec above WCW+Natural Escapement 3392	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 4 0 WTs Apportioned minus TRH #s minus TRH #s minus TRH #s minus TRH #s minus Escapement 3255	0 0 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000 Hook&Line 0 0 0 0 0 0 1 Natural Escaper nus above WCW of Proportions 0.2012 0.7451 0.0538	56 337		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	
vrected Scales own sca	### Ax4 Le age proportion	POOLED data from (Includes only fish values only fish val	all areas: Scale against both sc	ge-CWT age matrix. e and CWT known a 3 7 501 4 0 271 896 TRH HATCHERY 0.0272 0.9181 0.0547 0.0000 1.00000 1.00000 TRH HATCHERY 0 1175 56 0 1231 35 1266 tructure.	Lower Trinity Mainstem 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 TI WCW proportions 0.1498 0.7977	REC HARV 0.0158 0.9782 0.0059 0.0000 1.00000 (Estimated) Upper Trinity REC HARV 1 1 1 4 0 paper C RH + Rec above WCW+Natural Escapement 3392 18061	Upper Trin NATURAL 0.2012 0.7451 0.0538 0.0000 1.00000 (Estimated) Upper Trinity NATURAL 1 1 1 4 0 WTs Apportioned minus TRH #s min Escapement 3255 12059	0 0 1 Lower Trin Tribs 0.2014 0.7448 0.0538 0.0000 1.00000 1.00000 0 0 0 0 0 0 0 0	56 337		2 0.8529 0.1471 0.0000 0.0000 Correction Matr (Inverse of Scales) 1.1753 -0.1772 0.0019 0.0000 WCW scales WCW no cwts 206 1098 72 0	0.0137 0.9785 0.0078 0.0000 ix for ages 2,3,4,5. e-CWT age proport -0.0165 1.0275 -0.0117 0.00000	ion matrix.) 3	0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.1498 0.7977 0.0525 0.0000	

Appendix F. 2021 Kla	ımath l	Basin					posit	ion c	alculation wo			Link Ago	1/16/2022	
Hatchery spawners Iron Gate Hatchery (IGH)	Grilse 494	# Adults 7012	Total Run 7506	2 494	ALCULATI 3 4862	2096	5 54	Total 7506	scales	SCALE AGE PROPORTIONS (unknowns) 2		Unk. Age Scales Read 725	Redd Surveys Redds Liv	/e Video C
,							54		IGH cwts	91 803 270 1	1165			
Trinity River Hatchery (TRH) <i>Hatchery spawner subtota</i>	129 al: 623	5838 12850	5967 13473	129 <mark>623</mark>	5523 10385	315 2411	0 54	5967 13473	scales TRH cwts	0.02716	1.0 1231	896		
Natural Spawners	prop. hatc	_	0.046			proportion h	hatchery	21%					LAST DAY LIVES ARE ADULTS	ONLY
Trinity River mainstem above WCW Trinity River mainstem below WCW	3256 18	12928 70	16184 88	3256 18	12058 66	870 5	0	16184 88	WCW w/ age correction Up T main	0.20117 0.74507 0.05376 0.00000 0.20117 0.74507 0.05376 0.00000	1.0 1.0	1377 0	35	
Salmon River Basin (includes Wooley Cr) Scott River	263 655	1890 1307	2153 1962	263 655	738 344	1152 962	0	2153 1962	scales scales	0.12202	1.0 1.0	22 146	944 187	1400
Shasta River	927	5972	6899	30% 927	16% 1676	45% 4273	0% 23	6899	Scott CWT scales	0 0 0 0 0.13446 0.24273 0.61950 0.00331	0	302		6899
			2676						Shasta CWT	0 2 0 0	2			
Bogus Creek	423	2253		423	961	1281	11	2676	scales Bogus CWT	0.16084 0.35467 0.48062 0.00387 0 29 17 1	1.0 47	517		2232
Mainstem Klamath (IGH to Shasta R)	343	1762 <mark>-</mark>	2105	343	946	809	7	2105	scales KR main CWT	0.16397 0.44885 0.38389 0.00329 0 8 7 0	1.0 15	608		
Mainstem Klamath (Ash Cr to Wingate Bar) Mainstem Klamath (Persido Bar to Big Bar)	468 49	2384 254	2852 303	468 49	1280 141	1095 99	9 14	2852 303	Up K main	0.16397 0.44885 0.38389 0.00329 0.16226 0.46398 0.32830 0.04545		urrogate IGH urrogate	t 1192 127	
Main basin subtotal	s: 6,353	28,566	34,919	6,353	18,069	10,447	50	34,919	scale age proportions base	ed on Persido Bar to Big bar+ Camp+Red Cap+Rock- see tab				
Klamath Tributaries Aiken Cr	0	0	0	0	0	0	0	0	scales	0.15141 0.52440 0.32419 0.00000	1.0	40	0	0
Beaver Cr Bluff Cr	22	125	147	22	77	48	0	147	scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0	40 40	59 0	7
Boise Cr	5	30	35	5	18	11	0	35	scales scales	0.15141 0.52440 0.32419 0.00000	1.0	40	15	0
Camp Cr China Cr	42	235 0	277 0	42 0	145 0	90 0	0	277 0	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	115 0	0
Clear Cr Clear SF	26 0	144 0	170 0	26 0	89 0	55 0	0	170	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	72 0	0
Dillon Cr Elk Cr	7 14	40 77	47 91	7	25 48	15 30	0	47 91	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	20 37	0 3
Ft. Goff Cr Grider Cr	0	2	2	0	1 25	1 15	0	2	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0	40 40	1 20	0
Horse Cr	4	24	28	4	15	9	0	28	scales	0.15141 0.52440 0.32419 0.00000	1.0	40	12	0
Independence Cr Indian Cr	0 7	0 38	0 45	7	0 24	0 15	0	0 45	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	0 17	4
Indian SF Irving Cr	0 0	0 0	0	0	0	0 0	0	0	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	0	0
Pearch Cr Red Cap Cr	0 23	0 127	0 150	0 23	0 79	0 49	0	0 150	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	0 61	0 5
Rock Cr Rogers Cr	7	42	49	7	26	16	0	49	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	21	0
Slate Cr	1	8	9	1	5	3	0	9	scales	0.15141 0.52440 0.32419 0.00000	1.0	40	4	0
Swillup Cr Thompson Cr	0 12	0 69	0 81	0 12	0 42	0 26	0	0 81	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	0 34	1
Ti Cr Ukonom Cr	0	0 0	0	0	0	0 0	0	0	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	0	0
Other Pine Cr (fmoved to Hoopa tribs)	1	3 0	4	1	2	1 0	0	4 0	scales scales	0.15141 0.52440 0.32419 0.00000 0.15141 0.52440 0.32419 0.00000	1.0 1.0	40 40	10	1
Klamath trib subtota	al: 178	1004	1182	179	620	383	0	1182	3332	0.10.11. 0.02.10 0.0000			489	26
Trinity Tributaries	11	44	55	11	11	2	0	55	Ha Tarain	0.00447, 0.74507, 0.05276, 0.00000	4.0	0	24	
Horse Linto Cr Cedar Cr (trib to Horse Linto)	6	22	55 28	6	41 21	2	0	55 28	Up T main Up T main	0.20117 0.74507 0.05376 0.00000 0.20117 0.74507 0.05376 0.00000	1.0 1.0	0 0	21 11	0
Willow Cr Other (Madden creeks in Up TR nat estim)	16	64 0	08 0	16 0	60 0	4 0	0	80	Up T main Up T main	0.20117 0.74507 0.05376 0.00000 0.20117 0.74507 0.05376 0.00000	1.0	0	32	0
Trinity trib subtota Non-reservation trib subtota		130 1134	163 1345	33 212	121 741	9 392	0	163 1345					64	
Reservation Tributaries-Hoopa Valley						002								
Campbell Cr	0	0	0	0	0	0	0	0	Up T main	0.20117 0.74507 0.05376 0.00000	1.0	0	0	
Hostler Cr Mill Cr	20	78	98	20	73	0 5	0	98	Up T main Up T main	0.20117 0.74507 0.05376 0.00000 0.20117 0.74507 0.05376 0.00000	1.0 1.0	0	39	
Pine Cr (formerly included in klam tribs) Soctish Cr	0	0 0	0	0 0	0 0	0 0	0 0	0	Up T main Up T main	0.20117 0.74507 0.05376 0.00000 0.20117 0.74507 0.05376 0.00000	1.0 1.0	0 0	0	
Supply Cr Tish Tang Cr	7 5	28 18	35 23	7 5	26 17	2 1	0 0	35 23	Up T main Up T main	0.20117	1.0 1.0	0 0	14 9	
Other (Hospital Cr.) HVT reservation trib subtota	0 al: 32	0 124	0 156	0 32	0 116	0	0	0 156	Up T main	0.20117 0.74507 0.05376 0.00000	1.0	0	0 62	
Reservation Tributaries-Yurok	<i>ar.</i> 02	124	100	02	110	· ·	0	100	SUPPOGATE - Unweighted	avg of Blue Ck adults from 2007-09, 11-15, 17, 20 (years w/ surrogates om	oitted)		02	
Blue Cr	25	119	144	25	32	79	8	144	SURROGATE - Offweighted	count 0.26895 0.66439 0.06666	1.0	7		
Reservation tributaries subtota	al: 57	243	300	57	148	87	8	300		0.174				
Natural spawner subtota Total spawner		29943 42793	36564 50037	6622 7245	18958 29343	10926 13337	58 112	36564 50037						
Angler Harvest										0.05050 0.05001 0.05500 0.0550	4.0	400		
Klamath River (below Hwy 101)	138	249	387	138	100	147	2	387	scales est-LRC CWT	0.35653 0.25894 0.37729 0.00725 0 0 1 0	1.0	138		
Klamath River (Hwy 101 to Weitchpec)	2161	900	3061	2161	728	166	6	3061	scales mid-LRC CWT	0.71000 0.23334 0.05482 0.00184 10 21 0 0	1.0 31	543		
		Upper Klar ratio estim							SURROGATE - IGH+Bogus IGH+Bog+Klam+Sha	+Klamath Mainstem+Shasta Weighted Totals 2187 8445 8459 95	19186		IGH+BOG+Kmain+Shasta 19186	
Klamath River (Weitchpec to IGH)	74	579	653	74	287	288	4	653 URROGAT	E scales Lower TR sport	0.1140 0.4402 0.4409 0.0050	1.0			034
Trinity River (above Willow Cr. Weir)	8	482	490	8	479	3	0		rtions provided by Hoopa	0.01584 0.97822 0.00594 0.00000	1.0			
Trinity River (below Willow Cr. Weir)	16	55 <mark>-</mark>	71	16	55	0	0	71	scales	don't use paper TR CWTs in age calculations 0.22234 0.77766 0.00000 0.00000	1.0	15		
Angler harvest subtota	al: 2,397	2265	4,662	2,397	1,649	604	12	4662	TR-low CWT	0 1 0 0	1			
Tribal Harvest														
Klamath River (Estuary)	17	2598	2615	17	1089	1496	13	2615	scales YTFP EST CWT	0.00640 0.40823 0.58076 0.00461 1 43 8 0	1.0 52	434	Yurok harvest	
Klamath River (101 to Trinity R)	144	2842	2986	144	1540	1249	53	2986	scales	0.04870 0.51204 0.42129 0.01796	1.0	668	2243 MidK	
	136	2156	2292	136	1591	566	0	2292	YTFP MU CWT net scales	0 26 4 0 0.0652 0.6778 0.2570 0.0000	30 1.0	1,017	743 UpKI	1111
Trinity River (net and hook-and-line)		470	785	315	428	42	0	785	HVT net CWT weir scales	0 178 30 0 0.44419 0.50398 0.05183 0.00000	208 1.0	337		
,	315				4649	3353	66	8678	HVT weir CWT	0 70 5 0	75			
Trinity River (net and hook-and-line) Trinity River (harvest weir) Tribal harvest subtota		8066	8678	612	4648			I .					İ	
Trinity River (harvest weir)	al: 612	8066 10331	8678 13340	612 3009	6297	3957	78	13340						
Trinity River (harvest weir) Tribal harvest subtota Total harves Totals	al: 612 st: 3009	10331	13340	3009	6297	3957								
Trinity River (harvest weir) Tribal harvest subtote Total harves Totals Harvest and Escapement Angling drop-off mortality (2.04%)	al: 612 3009 10253 49	10331 53124 46	13340 63377 95	3009 10253 49	6297 35640 34	3957 17294 12	78 190 0	63377 95		gling drop-off mortality rate on harvest				
Trinity River (harvest weir) Tribal harvest subtote Total harves Totals Harvest and Escapement Angling drop-off mortality (2.04%)	al: 612 st: 3009	10331 53124	13340 63377	3009 10253	6297 35640	3957 17294		63377		gling drop-off mortality rate on harvest et drop-off mortality rate on harvest				
Trinity River (harvest weir) Tribal harvest subtota Total harves Totals Harvest and Escapement	al: 612 3009 10253 49	53124 46 671	63377 95 697	3009 10253 49	35640 34 372	3957 17294 12 292	190 0 7	63377 95 697	0.0870 ne Klam CWTs	ot drop-off mortality rate on harvest 0 0 0 0	0 .0000.			
Trinity River (harvest weir) Tribal harvest subtota Total harves Totals Harvest and Escapement Angling drop-off mortality (2.04%) Net drop-off mortality (8.7%)* Ich Disease Testing (Tribal)	al: 612 3009 10253 49 26	10331 53124 46	13340 63377 95	3009 10253 49	6297 35640 34	3957 17294 12		63377 95 697	0.0870 ne	ot drop-off mortality rate on harvest 0 0 0 0				

Appendix G: Estimation of age-2 Trinity River hatchery-origin abundances in the absence of coded-wire tag recoveries.

Fall Chinook Salmon reared at and released from Trinity River hatchery are marked by the removal of the adipose fin and implanted with coded wire tags at an approximate 25% rate annually for subsequent recovery in fisheries, freshwater escapement, and in hatchery returns. Tag recoveries are used to estimate the age-specific number of hatchery-origin fish in each recovery sector. No Chinook Salmon from brood year 2019 were marked or tagged at Trinity River hatchery due to travel and physical distancing limitations associated with the COVID-19 global pandemic. Consequently, Trinity River hatchery origin (TRH-origin) age-2 fish caught in ocean fisheries and returning to the Klamath River basin in 2021 were indistinguishable from natural-origin fish, and hatchery contributions to this age class could not be estimated using established methods. Accurate estimates of hatchery contributions to age classes 2-4 are necessary for estimation of fishery impact rates on hatchery and natural-origin stocks in ocean and terminal fisheries via cohort reconstructions. These estimates are also relevant to future fishery planning using the Klamath Ocean Harvest Model.

Estimation of the TRH-origin contribution to age-2 harvest or escapement in each relevant sector was estimated for the 2021 run year by multiplying the long-term un-weighted average proportion of TRH-origin fish among the total within each sector by the estimated total age-2 numbers within the same sector. Specifically, the number of age-2 TRH-origin fish within a given sector was estimated as:

$$TRH_{2021} = \tau_{2021} * \frac{\sum_{i=1}^{n} {^{TRH_i}}/\tau_i}{n}$$

Where

 TRH_i = number of age-2 TRH-origin fall Chinook Salmon estimated within a given sector in year i,

 τ_i = total number of age-2 fall Chinook Salmon estimated within a given sector in year i, irrespective of origin (hatchery or natural), and

 $n = \text{number of years for which estimates of } TRH_i \text{ and } \tau_i \text{ were available from 2001 to 2019.}$

Members of the Klamath River Technical Team (KRTT) agreed on the simplifying assumption that no age-2 TRH-origin fish strayed to natural spawning areas in the Klamath River or its tributaries (excluding the Trinity River), Iron Gate hatchery, or to rivers outside the Klamath basin. Consequently, age-2 TRH-origin fish were estimated only for the six sectors summarized in Table 1. The quantities TRH_i for fishery sectors were derived from the Klamath cohort reconstruction input table kohminland.dbf, and quantities τ_i were obtained from historic KRTT reports. These data were available starting in the 2001 run year. The quantities TRH_i and τ_i for Trinity River natural area escapement and returns to Trinity River hatchery were obtained from the 2020 CDFW annual run size report (Kier et al. 2021). These data were available starting in the 2002 run year. Run year 2020 was excluded from all analyses because the proportion of TRH-origin fish was a considerable outlier in several sectors. For example, more than 80% of age-2 harvest in the lower Klamath River recreational fishery was estimated to be TRH-origin in 2020, whereas the next highest percent since 2001 was less than 24% (Figure 1). All data points shown in Figure 1 were used to calculate the values presented in Table 1.

Table 1. Mean proportions of age-2 Trinity River hatchery-origin fish among total age-2 fish in six sectors of harvest or escapement in the Klamath River basin based on data from 2001 (fishery sectors) or 2002 (escapement sectors) to 2019.

	Sector	Proportion TRH
lower Klamath	recreational fishery	0.040
River	tribal fishery	0.030
	recreational fishery	0.125
Totalia Discon	tribal fishery	0.029
Trinity River	natural area escapement	0.164
_	hatchery escapement	0.845

Figure 1. Time series of the proportion of age-2 Trinity River hatchery-origin fall Chinook Salmon among total age-2 fall Chinook Salmon in various harvest and escapement sectors in the Klamath River basin. Sample sizes (n) and estimated mean proportions (dashed lines) are shown for each sector.

Reference

Kier, M. C., J. Hileman, and K. Lindke. 2021. Annual report Trinity River basin salmon and steelhead monitoring project: Chinook Salmon, Coho Salmon, and fall-run steelhead run-size estimates using mark-recapture methods. California Department of Fish and Wildlife, Northern Region, Klamath-Trinity Program, Arcata, CA.

Appendix H: Inclusion of known-age-2 CWT fish in scale validation matrices in 2021

Due to complications associated with Covid-19, no Trinity River Hatchery (TRH) Chinook were codedwire-tagged in 2020, which has resulted in there being no CWT known age-2 fish in the Trinity River Basin in 2021, and significantly reduced the number of CWT known age-2 fish in the Klamath River, which are used to bias correct reader scale ages. In order to account for this lack of CWT known age-2 samples to validate reader produced values, the Hoopa Valley Tribe (HVT), following the methods described in Satterthwaite et al. (2013), inserted CWT known age-2 scale samples from collection years 2019 and 2020 into the 2021 collection year to provide sufficient samples to validate age-2 reads. Satterthwaite et al. (2013) suggested that at least 20 known age archived scales should be incorporated into validation matrices for each age class lacking an adequate sample size of known -age scales from the current year. HVT incorporated a total of 34 CWT known age-2 fish from archived samples into the 2021 collection. As there are typically low numbers of age-2 fish captured in the HVT individual Tribal member fisheries as a result of the capture methods employed, it was decided that archived scales would be taken from and incorporated into sectors of only the weirs and the hatchery. Archived samples from the Willow Creek Weir (WCW) (4) and the Hoopa Selective Harvest Weir (HW) (10) were from return year 2019 and archived samples from TRH (20) were from the 2020 return year. Archived samples were randomly incorporated into the current year's collection, but sectors were not mixed. Once reader validation was completed, these CWT known age-2 were removed from the dataset prior to further calculations. For ageing in the Klamath River, the Yurok Tribe did not utilize this method but instead relied solely on Iron Gate Hatchery (IGH) fish, which were coded-wire-tagged in 2020 and used for age-2 validation in 2021. It should be noted that the overall number of CWT known age-2 fish returning to the Klamath River was significantly lower than normal.

Reference

Satterthwaite, W.H., O'Farrell, M.R., and M.S. Mohr. 2013. Klamath-Trinity Basin fall run Chinook Salmon scale age analysis evaluation. U. S. Department of Commerce, NOAA Technical Memorandum NOAA-TM-NMFS-SWFSC-522.

Appendix I: Estimation of Salmon River adult escapement, accounting for limited survey and a lack of sampling in Wooley Creek.

Limited survey in the Salmon River Basin

In 2021, the initial Salmon River redd survey was conducted during the first two weeks of the season (through week ending October 23). A large flow event began as of Friday October 22 (the first day of Julian Week 43), following two survey days on the lower Salmon River (October 14 and 21) and 2 survey days on the upper Salmon River (October 15 and 19). Although successful survey efforts were conducted following the high flow period (sampling resumed November 16 and ran through December 3), there was evidence of flattening of pre-existing redds, which likely indicates that spawning activity that occurred during the high flow period, were difficult to recognize (or possibly not at all recognizable) in the surveys during the latter part of the season. Although some new redds were located after the flow event, this impact likely led to an underestimate of spawning activity.

In the Salmon River system, substantial spawning typically occurs after Julian week 42, and this spawning activity was insufficiently sampled, with surveys unable to resume until late November. Additionally, no sampling was performed on Wooley Creek in 2021, and the total Salmon River escapement estimate reported annually includes fish spawning in Wooley Creek. To derive an adult spawner estimate given these sampling shortfalls in the Salmon River watershed, we employed methods previously developed by the KRTT to account for scenarios when sampling effort was either low or lacking altogether (KRTT 2009, 2011, 2017, 2018).

To account for the lack of sampling after Julian week 42 in the Salmon River, 2021 redd deposition data up to and including Julian week 42, and the cumulative distributions of redd deposition from past years were used to estimate redds in 2021 (KRTT 2009, 2011, 2017, 2018). Redd deposition data for years 1998-2020 (excluding 2005, 2010, 2013, 2016, 2017 and 2020, where survey effort was also low, or had a delayed start of the survey season) indicated that the mean proportion of new redds counted up to, and including, Julian week 42 was p = 0.356169. The KRTT discussed whether a mean, minimum, or maximum proportion of redd deposition (across years with appropriate data) at Julian week 42 would be most representative of 2021 conditions. The team decided that the mean proportion would be most appropriate because observations from other neighboring sectors (including the upper Klamath tributaries and the Scott River) suggested average run timing and spawning in 2021.

In 2021, 309 redds were enumerated through Julian week 41 (R_{inc} = 309) and the total number of redds in the Salmon River (R), not including Wooley Creek, was estimated to be:

$$R = \frac{R_{inc}}{p} = \frac{309}{0.356169} = 867.566$$

Lack of sampling in Wooley Creek

To account for the lack of sampling in Wooley Creek, we applied a method previously described in KRTT (2009, 2017, 2018). The ratio of the mean number of total redds in the Salmon River basin (including Wooley Creek, \bar{T}) to the mean number of redds in the Salmon River (excluding Wooley Creek \bar{S}) was computed using data from 1996-2020 (but excluding appropriate years as indicated above):

$$\lambda = \frac{\bar{T}}{\bar{S}} = \frac{1041.727}{957.2727} = 1.0882244$$

The total number of redds in the Salmon River Basin (R_{tot}), accounting for both a shortened survey and a lack of sampling in Wooley Creek, is therefore:

$$R_{tot} = R x \lambda = 867.566 x 1.0882244 = 944$$

With an estimated total of 944 redds, we apply the standard redd estimator (redds x 2 + Last Day Lives), resulting in:

(944 x 2) + 2 = 1,890 adult fall Chinook salmon in the Salmon River Basin, including Wooley Creek.

References

KRTT (Klamath River Technical Team). 2009. Klamath River fall Chinook age-specific escapement, river harvest, and run size estimates, 2008 run. Available from the Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR 97220-1384.

KRTT (Klamath River Technical Team). 2011. Klamath River fall Chinook age-specific escapement, river harvest, and run size estimates, 2010 run. Available from the Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR 97220-1384.

KRTT (Klamath River Technical Team). 2017. Klamath River fall Chinook age-specific escapement, river harvest, and run size estimates, 2016 run. Available from the Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR 97220-1384.

KRTT (Klamath River Technical Team). 2018. Klamath River fall Chinook age-specific escapement, river harvest, and run size estimates, 2017 run. Available from the Pacific Fishery Management Council, 7700 NE Ambassador Place, Suite 101, Portland, OR 97220-1384.

Appendix J. Final age composition of the 2020 Klamath Basin fall Chinook run.

2/8/2022

			AGE		Total	Total
Escapement & Harvest	2	3	4	5	Adults	Run
Hatchery Spawners	440	0.400	0.40		4.040	4.45
Iron Gate Hatchery (IGH)	413	3,198	843	1	4,042	4,45
Trinity River Hatchery (TRH)	2,815	4,070	219	0	4,289	7,10
Hatchery Spawner subtotal	3,228	7,268	1,062	1	8,331	11,55
Natural Spawners						
Salmon River Basin	122	862	110	0	972	1,09
Scott River Basin	43	564	248	0	812	8
Shasta River Basin	393	2,948	827	0	3,775	4,16
Bogus Creek Basin	88	1,909	324	0	2,233	2,32
Klamath River mainstem (IGH to Shasta R.)	55	1,087	83	0	1,170	1,22
Klamath River mainstem (Ash Cr. to Wingate Bar)	75	1,474	110	0	1,584	1,6
Klamath River mainstem (Persido Bar to Big Bar)	20	249	25	0	274	29
Klamath tributaries (above Trinity River)	34	836	38	0	874	90
Blue Creek	<u>99</u>	<u>46</u>	<u>78</u>	<u>0</u> 0	<u>124</u>	<u>22</u>
Klamath Basin subtotal	929	9,975	1,843	0	11,818	12,74
Trinity River Basin (above WCW)	3,792	12,182	1,553	0	13,735	17,52
Trinity River mainstem (below WCW)	93	298	38	0	336	42
Trinity tributaries (above Reservation, below WCW)	97	139	75	0	214	31
Hoopa Reservation tributaries	<u>37</u>	<u>53</u>	<u>29</u>		<u>82</u>	11
Trinity Basin subtotal	4,019	12,6 72	1,695	<u>0</u> 0	14,3 67	18,38
Natural Spawners subtotal	4,948	22,647	3,538	0	26,185	31,13
Total Spawner Escapement	8,176	29,915	4,600	1	34,516	42,69
Recreational Harvest						
Klamath River (below Hwy 101)	39	168	38	0	206	24
Klamath River (Hwy 101 to Weitchpec)	343	2,718	228	0	2,946	3,28
Klamath River (Weitchpec to IGH)	134	1,294	294	1	1,589	1,72
Trinity River Basin (above WCW)	0	322	6	0	328	32
Trinity River Basin (below WCW)	17	52	2	0	54	
Subtotals	533	4,554	568	1	5,123	5,6
<u>Tribal Harvest</u>						
Klamath River (below Hwy 101)	85	915	809	6	1,730	1,8
Klamath River (Hwy 101 to Weitchpec)	156	1,433	1,070	0	2,503	2,6
Trinity River	87	649	330	0	979	1,00
Trinity River (harvest weir)	0	0	0	0	0	
Subtotals	328	2,997	2,209	6	5,212	5,5
Total Harvest	861	7,551	2,777	7	10,335	11,1
Totals						
Harvest and Escapement	9,037	37,466	7,377	8	44,851	53,8
Recreational Angling Dropoff Mortality 2.04%	11	93	12	0	105	1
Tribal Net Dropoff Mortality 8.7%	29	261	192	0	453	48